The eXceptional nature of the X chromosome (2024)

1. Hughes J.F., Page D.C. (2016) The history of the Y chromosome in man. Nat. Genet., 48, 588–589. [PubMed] [Google Scholar]

2. Veitia R.A., Veyrunes F., Bottani S., Birchler J.A. (2015) X chromosome inactivation and active X upregulation in therian mammals: facts, questions, and hypotheses. J. Mol. Cell. Biol., 7, 2–11. [PubMed] [Google Scholar]

3. Marin R., Cortez D., Lamanna F., Pradeepa M.M., Leushkin E., Julien P., Liechti A., Halbert J., Brüning T., Mössinger K. (2017) Convergent origination of a Drosophila-like dosage compensation mechanism in a reptile lineage. Genome Res., 27, 1974–1987. [PMC free article] [PubMed] [Google Scholar]

4. Nam K., Munch K., Hobolth A., Dutheil J.Y., Veeramah K.R., Woerner A.E., Hammer M.F., Mailund T., Schierup M.H. (2015) Extreme selective sweeps independently targeted the X chromosomes of the great apes. Proc. Natl. Acad. Sci. USA, 112, 6413–6418. [PMC free article] [PubMed] [Google Scholar]

5. Carelli F.N., Hayakawa T., Go Y., Imai H., Warnefors M., Kaessmann H. (2016) The life history of retrocopies illuminates the evolution of new mammalian genes. Genome Res., 26, 301–314. [PMC free article] [PubMed] [Google Scholar]

6. Sosa E., Flores L., Yan W., McCarrey J.R. (2015) Escape of X-linked miRNA genes from meiotic sex chromosome inactivation. Development, 142, 3791–3800. [PMC free article] [PubMed] [Google Scholar]

7. Royo H., Seitz H., ElInati E., Peters A.H.F.M., Stadler M.B., Turner J.M.A. (2015) Silencing of X-linked microRNAs by meiotic sex chromosome inactivation. PLoS Genet., 11, e1005461.. [PMC free article] [PubMed] [Google Scholar]

8. Balaton B.P., Brown C.J. (2016) Escape artists of the X chromosome. Trends Genet., 32, 348–359. [PubMed] [Google Scholar]

9. Wang S., Su J.-H., Beliveau B.J., Bintu B., Moffitt J.R., Wu C.-T., Zhuang X. (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science, 353, 598–602. [PMC free article] [PubMed] [Google Scholar]

10. Giorgetti L., Lajoie B.R., Carter A.C., Attia M., Zhan Y., Xu J., Chen C.J., Kaplan N., Chang H.Y., Heard E., Dekker J. (2016) Structural organization of the inactive X chromosome in the mouse. Nature, 535, 575–579. [PMC free article] [PubMed] [Google Scholar]

11. Deng X., Ma W., Ramani V., Hill A., Yang F., Ay F., Berletch J.B., Blau C.A., Shendure J., Duan Z., Noble W.S., Disteche C.M. (2015) Bipartite structure of the inactive mouse X chromosome. Genome Biol., 16, 152.. [PMC free article] [PubMed] [Google Scholar]

12. Darrow E.M., Huntley M.H., Dudchenko O., Stamenova E.K., Durand N.C., Sun Z., Huang S.-C., Sanborn A.L., Machol I., Shamim M.. et al. (2016) Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc. Natl. Acad. Sci. USA, 113, E4504–E4512. [PMC free article] [PubMed] [Google Scholar]

13. Barutcu A.R., Maass P.G., Lewandowski J.P., Weiner C.L., Rinn J.L. (2018) A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus. Nat. Commun., 9, 1444.. [PMC free article] [PubMed] [Google Scholar]

14. Yang F., Deng X., Ma W., Berletch J.B., Rabaia N., Wei G., Moore J.M., Filippova G.N., Xu J., Liu Y.. et al. (2015) The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol., 16, 52.. [PMC free article] [PubMed] [Google Scholar]

15. Yamada N., Hasegawa Y., Yue M., Hamada T., Nakagawa S., Ogawa Y. (2015) Xist exon 7 contributes to the stable localization of Xist RNA on the inactive X-chromosome. PLoS Genet., 11, e1005430.. [PMC free article] [PubMed] [Google Scholar]

16. Okamoto I., Patrat C., Thépot D., Peynot N., Fauque P., Daniel N., Diabangouaya P., Wolf J.-P., Renard J.-P., Duranthon V., Heard E. (2011) Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature, 472, 370–374. [PubMed] [Google Scholar]

17. Petropoulos S., Edsgärd D., Reinius B., Deng Q., Panula S.P., Codeluppi S., Plaza Reyes A., Linnarsson S., Sandberg R., Lanner F. (2016) Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell, 165, 1012–1026. [PMC free article] [PubMed] [Google Scholar]

18. Vallot C., Patrat C., Collier A.J., Huret C., Casanova M., Liyakat Ali T.M., Tosolini M., Frydman N., Heard E., Rugg-Gunn P.J., Rougeulle C. (2017) XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell, 20, 102–111. [PMC free article] [PubMed] [Google Scholar]

19. Moreira de Mello J.C., Fernandes G.R., Vibranovski M.D., Pereira L.V. (2017) Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Sci. Rep., 7, 10794.. [PMC free article] [PubMed] [Google Scholar]

20. Geens M., Chuva De Sousa Lopes S.M. (2017) X chromosome inactivation in human pluripotent stem cells as a model for human development: back to the drawing board? Hum. Reprod. Update, 23, 520–532. [PubMed] [Google Scholar]

21. Sahakyan A., Kim R., Chronis C., Sabri S., Bonora G., Theunissen T.W., Kuoy E., Langerman J., Clark A.T., Jaenisch R., Plath K. (2017) Human naive pluripotent stem cells model X chromosome dampening and X inactivation. Cell Stem Cell, 20, 87–101. [PMC free article] [PubMed] [Google Scholar]

22. Guo G., von Meyenn F., Rostovskaya M., Clarke J., Dietmann S., Baker D., Sahakyan A., Myers S., Bertone P., Reik W., Plath K., Smith A. (2017) Epigenetic resetting of human pluripotency. Development, 144, 2748–2763. [PMC free article] [PubMed] [Google Scholar]

23. Migeon B.R., Beer M.A., Bjornsson H.T. (2017) Embryonic loss of human females with partial trisomy 19 identifies region critical for the single active X. PLoS One, 12, e0170403.. [PMC free article] [PubMed] [Google Scholar]

24. Mutzel V., Okamoto I., Dunkel I., Saitou M., Giorgetti L., Heard E., Schulz E.G. (2017) Two coupled feedback loops explain random mono-allelic Xist upregulation at the onset of X-chromosome inactivation. BioXRIV. 10.1101/204909.

25. Chu C., Zhang Q.C., da Rocha S.T., Flynn R.A., Bharadwaj M., Calabrese J.M., Magnuson T., Heard E., Chang H.Y. (2015) Systematic discovery of Xist RNA binding proteins. Cell, 161, 404–416. [PMC free article] [PubMed] [Google Scholar]

26. Minajigi A., Froberg J.E., Wei C., Sunwoo H., Kesner B., Colognori D., Lessing D., Payer B., Boukhali M., Haas W., Lee J.T. (2015) Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science, 349, aab2276–aab2276. [PMC free article] [PubMed] [Google Scholar]

27. McHugh C.A., Chen C.-K., Chow A., Surka C.F., Tran C., McDonel P., Pandya-Jones A., Blanco M., Burghard C., Moradian A.. et al. (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature, 521, 232–236. [PMC free article] [PubMed] [Google Scholar]

28. Moindrot B., Brockdorff N. (2016) RNA binding proteins implicated in Xist-mediated chromosome silencing. Semin. Cell Dev. Biol., 56, 58–70. [PubMed] [Google Scholar]

29. da Rocha S.T., Heard E. (2017) Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nat. Struct. Mol. Biol., 24, 197–204. [PubMed] [Google Scholar]

30. Pintacuda G., Wei G., Roustan C., Kirmizitas B.A., Solcan N., Cerase A., Castello A., Mohammed S., Moindrot B., Nesterova T.B.. et al. (2017) hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish polycomb-mediated chromosomal silencing. Mol. Cell, 68, 955–969. [PMC free article] [PubMed] [Google Scholar]

31. Almeida M., Pintacuda G., Masui O., Koseki Y., Gdula M., Cerase A., Brown D., Mould A., Innocent C., Nakayama M.. et al. (2017) PCGF3/5–PRC1 initiates polycomb recruitment in X chromosome inactivation. Science, 356, 1081–1084. [PMC free article] [PubMed] [Google Scholar]

32. Kolpa H.J., Fackelmayer F.O., Lawrence J.B. (2016) SAF-A requirement in anchoring XIST RNA to chromatin varies in transformed and primary cells. Dev. Cell, 39, 9–10. [PMC free article] [PubMed] [Google Scholar]

33. Ridings-Figueroa R., Stewart E.R., Nesterova T.B., co*ker H., Pintacuda G., Godwin J., Wilson R., Haslam A., Lilley F., Ruigrok R.. et al. (2017) The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes. Dev., 31, 876–888. [PMC free article] [PubMed] [Google Scholar]

34. Sunwoo H., Colognori D., Froberg J.E., Jeon Y., Lee J.T. (2017) Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc. Natl. Acad. Sci. USA, 114, 10654–10659. [PMC free article] [PubMed] [Google Scholar]

35. Wang J., Syrett C.M., Kramer M.C., Basu A., Atchison M.L., Anguera M.C. (2016) Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc. Natl. Acad. Sci. USA, 113, E2029–E2038. [PMC free article] [PubMed] [Google Scholar]

36. Syrett C.M., Sindhava V., Hodawadekar S., Myles A., Liang G., Zhang Y., Nandi S., Cancro M., Atchison M., Anguera M.C. (2017) Loss of Xist RNA from the inactive X during B cell development is restored in a dynamic YY1-dependent two-step process in activated B cells. PLoS Genet., 13, e1007050.. [PMC free article] [PubMed] [Google Scholar]

37. Jeon Y., Lee J.T. (2011) YY1 tethers Xist RNA to the inactive X nucleation center. Cell, 146, 119–133. [PMC free article] [PubMed] [Google Scholar]

38. Patil D.P., Chen C.-K., Pickering B.F., Chow A., Jackson C., Guttman M., Jaffrey S.R. (2016) m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature, 537, 369–373. [PMC free article] [PubMed] [Google Scholar]

39. Kelsey A.D., Yang C., Leung D., Minks J., Dixon-McDougall T., Baldry S.E.L., Bogutz A.B., Lefebvre L., Brown C.J. (2015) Impact of flanking chromosomal sequences on localization and silencing by the human non-coding RNA XIST. Genome Biol., 16, 208. [PMC free article] [PubMed] [Google Scholar]

40. Loda A., Brandsma J.H., Vassilev I., Servant N., Loos F., Amirnasr A., Splinter E., Barillot E., Poot R.A., Heard E.. et al. (2017) Genetic and epigenetic features direct differential efficiency of Xist-mediated silencing at X-chromosomal and autosomal locations. Nat. Commun., 8, 690. [PMC free article] [PubMed] [Google Scholar]

41. Tukiainen T., Villani A.-C., Yen A., Rivas M.A., Marshall J.L., Satija R., Aguirre M., Gauthier L., Fleharty M., Kirby A.. et al. (2017) Landscape of X chromosome inactivation across human tissues. Nature, 550, 244–248. [PMC free article] [PubMed] [Google Scholar]

42. Balaton B.P., Cotton A.M., Brown C.J. (2015) Derivation of consensus inactivation status for X-linked genes from genome-wide studies. Biol. Sex Dif., 6, 35. [PMC free article] [PubMed] [Google Scholar]

43. Marks H., Kerstens H.H.D., Barakat T.S., Splinter E., Dirks R.A.M., van Mierlo G., Joshi O., Wang S.-Y., Babak T., Albers C.A.. et al. (2015) Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biol., 16, 149.. [PMC free article] [PubMed] [Google Scholar]

44. Naqvi S., Bellott D.W., Lin K.S., Page D.C. (2018) Conserved microRNA targeting reveals preexisting gene dosage sensitivities that shaped amniote sex chromosome evolution. Genome Res., 10.1101/gr.230433.117. [PMC free article] [PubMed] [Google Scholar]

45. Lyon M.F. (1998) X-Chromosome inactivation: a repeat hypothesis. Cytogenet. Genome Res., 80, 133–137. [PubMed] [Google Scholar]

46. Yang C., McLeod A.J., Cotton A.M., de Leeuw C.N., Laprise S., Banks K.G., Simpson E.M., Brown C.J. (2012) Targeting of >1.5 Mb of human DNA into the mouse X chromosome reveals presence of cis-acting regulators of epigenetic silencing. Genetics, 192, 1281–1293. [PMC free article] [PubMed] [Google Scholar]

47. Cotton A.M., Chen C.-Y., Lam L.L., Wasserman W.W., Kobor M.S., Brown C.J. (2014) Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains. Hum. Mol. Genet., 23, 1211–1223. [PMC free article] [PubMed] [Google Scholar]

48. Horvath L.M., Li N., Carrel L. (2013) Deletion of an X-inactivation boundary disrupts adjacent gene silencing. PLoS Genet., 9, e1003952.. [PMC free article] [PubMed] [Google Scholar]

49. Carrel L., Brown C.J. (2017) When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome. Philos. Trans. R. Soc. Lond. B Biol. Sci., 372, 20160355.. [PMC free article] [PubMed] [Google Scholar]

50. Peeters S.B., Korecki A.J., Simpson E.M., Brown C.J. (2018) Human cis-acting elements regulating escape from X-chromosome inactivation function in mouse. Hum. Mol. Genet., 27, 1252–1262. [PMC free article] [PubMed] [Google Scholar]

51. Ding Z., Ni Y., Timmer S.W., Lee B.-K., Battenhouse A., Louzada S., Yang F., Dunham I., Crawford G.E., Lieb J.D.. et al. (2014) Quantitative genetics of CTCF binding reveal local sequence effects and different modes of X-chromosome association. PLoS Genet., 10, e1004798. [PMC free article] [PubMed] [Google Scholar]

52. Fieremans N., Van Esch H., Holvoet M., Van Goethem G., Devriendt K., Rosello M., Mayo S., Martinez F., Jhangiani S., Muzny D.M.. et al. (2016) Identification of intellectual disability genes in female patients with a skewed X-inactivation pattern. Hum. Mutat., 37, 804–811. [PMC free article] [PubMed] [Google Scholar]

53. Arnold A.P., Reue K., Eghbali M., Vilain E., Chen X., Ghahramani N., Itoh Y., Li J., Link J.C., Ngun T.. et al. (2016) The importance of having two X chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci., 371, 20150113.. [PMC free article] [PubMed] [Google Scholar]

54. Printzlau F., Wolstencroft J., Skuse D.H. (2017) Cognitive, behavioral, and neural consequences of sex chromosome aneuploidy. J. Neurosci. Res., 95, 311–319. [PubMed] [Google Scholar]

55. Sharma R., Harris V.M., Cavett J., Kurien B.T., Liu K., Koelsch K.A., Fayaaz A., Chaudhari K.S., Radfar L., Lewis D.. et al. (2017) Rare X chromosome abnormalities in systemic lupus erythematosus and Sjögren's syndrome. Arthritis Rheumatol., 69, 2187–2192. [PMC free article] [PubMed] [Google Scholar]

56. Dunford A., Weinstock D.M., Savova V., Schumacher S.E., Cleary J.P., Yoda A., Sullivan T.J., Hess J.M., Gimelbrant A.A., Beroukhim R.. et al. (2017) Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat. Genet., 49, 10–16. [PMC free article] [PubMed] [Google Scholar]

57. Cheng F., Liu C., Lin C.-C., Zhao J., Jia P., Li W.-H., Zhao Z. (2015) A gene gravity model for the evolution of cancer genomes: a study of 3, 000 cancer genomes across 9 cancer types. PLoS Comp. Biol., 11, e1004497. [PMC free article] [PubMed] [Google Scholar]

58. Chaligné R., Popova T., Mendoza-Parra M.-A., Saleem M.-A.M., Gentien D., Ban K., Piolot T., Leroy O., Mariani O., Gronemeyer H.. et al. (2015) The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Res., 25, 488–503. [PMC free article] [PubMed] [Google Scholar]

59. Skare Ø., Gjessing H.K., Gjerdevik M., Haaland Ø.A., Romanowska J., Lie R.T., Jugessur A. (2017) A new approach to chromosome-wide analysis of X-linked markers identifies new associations in Asian and European case-parent triads of orofacial clefts. PLoS One, 12, e0183772.. [PMC free article] [PubMed] [Google Scholar]

60. Carrette L.L.G., Wang C.-Y., Wei C., Press W., Ma W., Kelleher R.J., Lee J.T. (2017) A mixed modality approach towards Xi reactivation for Rett syndrome and other X-linked disorders. Proc. Natl. Acad. Sci. USA, 115, E668–E675. [PMC free article] [PubMed] [Google Scholar]

61. Jiang J., Jing Y., Cost G.J., Chiang J.-C., Kolpa H.J., Cotton A.M., Carone D.M., Carone B.R., Shivak D.A., Guschin D.Y.. et al. (2013) Translating dosage compensation to trisomy 21. Nature, 500, 296–300. [PMC free article] [PubMed] [Google Scholar]

62. Kilens S., Meistermann D., Moreno D., Chariau C., Gaignerie A., Reignier A., Lelièvre Y., Casanova M., Vallot C., Nedellec S.. et al. (2018) Parallel derivation of isogenic human primed and naive induced pluripotent stem cells. Nat. Commun., 9, 360.. [PMC free article] [PubMed] [Google Scholar]

The eXceptional nature of the X chromosome (2024)

FAQs

The eXceptional nature of the X chromosome? ›

Mammalian X chromosomes display extraordinary evolution compared with autosomes and a disproportionate effect on male fertility and genetic incompatibilities between species. They are enriched for genes expressed in the testis and undergo specific silencing during male meiosis.

What is special about the X chromosome? ›

An X chromosome carries more than 1000 genes including those essential for embryo development, while a Y chromosome contains tens of genes required for only male determination and development.

What traits are on the X chromosome? ›

Here are some common X-linked traits and disorders:
  • Red-green color blindness is a recessive trait linked to the X chromosome. ...
  • Tetrachromatism is the one X-linked trait that is seemingly a superpower. ...
  • Hemophilia A and B are blood disorders linked to the X chromosome.

What is the nature of X and Y chromosome? ›

Each person normally has one pair of sex chromosomes in each cell. The Y chromosome is present in males, who have one X and one Y chromosome, while females have two X chromosomes. Identifying genes on each chromosome is an active area of genetic research.

What are the traits of a woman with an extra X chromosome? ›

Girls with triple X syndrome — also known as XXX syndrome, trisomy X, and 47,XXX — might be taller than other girls. Other symptoms can include problems with spoken language and processing spoken words, coordination problems, and weaker muscles.

What is the X chromosome problem? ›

Turner syndrome, a condition that affects only females, results when one of the X chromosomes (sex chromosomes) is missing or partially missing. Turner syndrome can cause a variety of medical and developmental problems, including short height, failure of the ovaries to develop and heart defects.

What does the X shaped chromosome represents? ›

The 23rd pair of chromosomes are two special chromosomes, X and Y, that determine our sex. Females have a pair of X chromosomes (46, XX), whereas males have one X and one Y chromosomes (46, XY). Chromosomes are made of DNA, and genes are special units of chromosomal DNA.

Can men have XX chromosomes? ›

XX males. The frequency of XX males is approximately 1 in 25,000 males. These individuals may come to medical attention for evaluation of delayed puberty, infertility, gynecomastia, or a disorder of sexual development. XX males can be classified as SRY-positive or SRY-negative.

How to get X chromosome sperm? ›

Through the first meiotic cell division, the primary spermatocyte yields two secondary spermatocytes, which then enter the second meiotic division and divides into four round spermatids that contain either the X or Y chromosomes (Leblond and Clermont, 1952).

What type of trait is XY? ›

Offspring have two sex chromosomes: an offspring with two X chromosomes (XX) will develop female characteristics, and an offspring with an X and a Y chromosome (XY) will develop male characteristics.

What disorder do you have if you have an extra X chromosome? ›

Klinefelter syndrome (sometimes called Klinefelter's, KS or XXY) is where boys and men are born with an extra X chromosome. Chromosomes are packages of genes found in every cell in the body. There are 2 types of chromosome, called the sex chromosomes, that determine the genetic sex of a baby.

What is the superwoman genetic disorder? ›

Overview. Triple X syndrome, also called trisomy X or 47,XXX, is a genetic disorder that affects about 1 in 1,000 females. Females normally have two X chromosomes in all cells — one X chromosome from each parent. In triple X syndrome, a female has three X chromosomes.

What happens to the extra X chromosome in females? ›

An extra copy of the X chromosome is associated with tall stature, learning problems, and other features in some affected individuals. Some females with trisomy X have an extra X chromosome in only some of their cells. This phenomenon is called 46,XX/47,XXX mosaicism.

What does the X chromosome tell you? ›

The X chromosome is one of the two sex chromosomes that are involved in sex determination. Humans and most other mammals have two sex chromosomes (X and Y) that in combination determine the sex of an individual. Females have two X chromosomes in their cells, while males have one X and one Y.

What does the X chromosome carry the gene for? ›

A fetus with an X chromosome that carries the SRY gene will develop sex characteristics that are typical for males despite not having a Y chromosome.

Why are X and Y chromosomes different? ›

The X and Y chromosomes, both of which derived from autosomes, were initially about the same size. At some specific time along the way, the Y chromosome gradually lost the ability to recombine - or exchange genetic information - with the X chromosome and began to evolve independently.

Why do females need two X chromosomes? ›

At the same time, each copy of the X chromosome contains versions of genes not found on its partner. So having two X chromosomes gives females more genetic diversity than males, with their single X chromosome. Because of that, females have a genetic complexity that scientists are only starting to understand.

References

Top Articles
Latest Posts
Article information

Author: Rueben Jacobs

Last Updated:

Views: 6073

Rating: 4.7 / 5 (57 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Rueben Jacobs

Birthday: 1999-03-14

Address: 951 Caterina Walk, Schambergerside, CA 67667-0896

Phone: +6881806848632

Job: Internal Education Planner

Hobby: Candle making, Cabaret, Poi, Gambling, Rock climbing, Wood carving, Computer programming

Introduction: My name is Rueben Jacobs, I am a cooperative, beautiful, kind, comfortable, glamorous, open, magnificent person who loves writing and wants to share my knowledge and understanding with you.